客服热线:17600109315

西安光机所在病原菌快速识别领域获进展

2022-08-15 10:45:10浏览:327来源:中科院西安光机所   

       近日,中国科学院西安光学精密机械研究所博士张周锋带领的研究团队,在光谱医学诊断领域取得新进展,将高光谱显微成像技术与深度学习理论相结合,实现了临床多类病原菌的快速识别。相关研究成果以A deep-learning based system for rapid genus identification of pathogens under hyperspectral microscopic images为题,发表在Cells Topical Collection Computational Imaging for Biophotonics and Biomedicine上。

 

  本研究与多家医疗单位合作,利用自研高光谱病原菌快速分析系统,捕获到单细菌尺度的高分辨高光谱图谱数据;利用深度学习网络对临床上万例样本数据进行分析,最终实现了多类临床病原菌类别的高效、准确识别。该成果可使临床医生在较短时间内掌握患者的病原菌感染信息,对于诊疗方案的快速制定具有重要的临床指导意义。

 

  该工作为光谱成像技术研究室、西安市生物医学光谱学重点实验室在医工交叉领域的研究开辟了新方向,同时,将推进癌变组织快速诊断、数字病理、手术引导等研究的发展。

 

图 高光谱病原菌数据分析流程

(责任编辑:CHINALASER)
下一篇:

研华“嵌入式边缘AI研讨会”成功举办,边缘AI方兴未艾

上一篇:

从自适应光学迈向“智适应光学”

  • 信息二维码

    手机看新闻

  • 分享到
打赏
免责声明
• 
此文内容为本网站刊发或转载企业宣传资讯,仅代表作者个人观点,与本网无关。仅供读者参考,并请自行核实相关内容。涉及到版权或其他问题,请及时联系我们 189888977@qq.com